Dr. Min Soe

Name: Dr. Min Soe

Email: [email protected]

Phone Number: 918-343-7693

Title: Professor

Department: Mathematics & Physical Sciences

Office: Stratton Taylor Library, Room 114

Education

Ph.D., Physics
College of William and Mary, VA

M.S., Applied Mathematics
M.S., Physics
Hampton University, VA

B.Sc., Physics
Rangoon University, BURMA

Academic Experience

2009-Present, Professor, Department of Mathematics and Physical Sciences
2004-2009, Associate Professor, Department of Mathematics and Physical Sciences
2001-2004, Assistant Professor, Department of Science and Mathematics
Rogers State University, Claremore, OK

2001, Associate Professor of Mathematics and Physics
1997-2001, Assistant Professor of Mathematics and Physics
Oklahoma Panhandle State University, Goodwell, OK

Areas of Research

Magnetohydrodynamics and plasma physics, kinetic theory of turbulence modeling, mesoscale simulation methods, quantum algorithms and parallel computing.

Publications

[43] “Two-Dimensional Electromagnetic Scattering from Dielectric Objects using Qubit Lattice Algorithm”, G. Vahala, M. Soe, L. Vahala, and A. K. Ram, arXiv:2110.05480v3, https://arxiv.org/abs/2110.05480 

[42] “The effect of the width of the incident pulse to the dielectric transition layer in the scattering of an electromagnetic pulse – a quantum lattice algorithm simulation”, G. Vahala, L. Vahala, A. K. Ram, M. Soe,  Communications in Computational Physics (Accepted), arXiv:2201.09259v1. 

[41] “Quantum Lattice Representation for the Curl Equations of Maxwell Equations”, G. Vahala, J. Hawthorne, L. Vahala, A. K. Ram, and Min Soe,   Radiation Effects and Defects in Solids, Special Issue 1-2, Volume 177 P85-94 (2022), arXiv:2111.09745v1. 

[40] “Reflection and transmission of electromagnetic pulses at a planer dielectric interface: Theory and quantum lattice simulations”, Abhay K. Ram, George Vahala, Linda Vahala and Min Soe, AIP Advances, 11, 105116 (2021), arXiv:2108.06880. 

[39] “One-and two-dimensional quantum lattice algorithms for Maxwell equations in inhomogeneous scalar dielectric media – II: Simulations”, G. Vahala, M. Soe, L. Vahala, and A. Ram, Radiation Effects and Defects in Solids, Volume 176, Issue 1-2 p64-72 (2021)
 
[38] “One-and two-dimensional quantum lattice algorithms for Maxwell equations in inhomogeneous scalar dielectric media – I: Theory”, G. Vahala, L. Vahala, M. Soe and A. K. Ram, Radiation Effects and Defects in Solids, Volume 176 Issue 1-2 p49-63 (2021) 
 

[37] “Building a three-dimensional quantum lattice algorithm for Maxwell Equations” G. Vahala, L. Vahala, M. Soe and A. K. Ram, Radiation Effects and Defects in Solids, Volume 175, Issue 11-12 p986-990 (2020)

[36] “Unitary Quantum Lattice Simulations for Maxwell Equations in Vacuum and Dielectric Media”, G. Vahala, L. Vahala, M. Soe and A. K. Ram, Journal of Plasma Physics – Journal of Plasma Physics, Volume 86, Issue 5 (2020) 

[35] “Qubit Lattice Algorithms for Spin-2 Bose-Einstein Condensates: II – Vortex Reconnection Simulations and non-Abelian Vortices”, G. Vahala, M. Soe and L. Vahala, Radiation Effects and Defects in Solids 175, 113-119 (2020)

[34] “Qubit Lattice Algorithms for Spin-2 Bose-Einstein Condensates: I – Theory and Pade Initial Conditions”, G. Vahala, L. Vahala and M. Soe, Radiation Effects and Defects in Solids 175, 102-112 (2020)

[33] “Critical Space Infrastructures and Quantum Computing”, L. Vahala, G. Vahala and M. Soe, in NATO Science for Peace and Security Series, ISO Press (Amsterdam) Vol 57, pp223-242; ed. U. Tatar, A. V. Gneorghe, O. F. Keskin and J. Muylaert (2020).

[32] “Unitary Qubit Lattice Algorithm for Three-Dimensional Vortex Solitons in Hyperbolic Self-Defocusing Media”, L. Vahala, G, Vahala, M. Soe, A. Ram and J. Yepez, Communications in Nonlinear Science and Numerical Simulation, 75, 152-159 (2019)

[31] “Unitary Qubit Lattice Algorithms for Spin-1 Bose Einstein Condensates”, L. Vahala, M. Soe, G. Vahala and Yepez, Radiation Effects and Defects in Solids, 174, (1-2) 46-55 (2019)

[30] “Effect of Fourier Transform on the Streaming in Quantum Lattice Gas Algorithms” A. Oganesov, G. L, Vahala1, and M. Soe, Radiation Effects and Defects in Solids, Volume 173, Issue 3-4 pp169-174 (2018).

[29] “Lattice Algorithms for Nonlinear Physics”, C. Flint, A. Oganesov, G. L, Vahala1, and M. Soe, Radiation Effects and Defects in Solids, Vol. 172, Issue 9-10, pp737-741 (2017).

[28] “Benchmarking the Dirac-generated unitary lattice qubit collision-stream algorithm for 1D vector Manakov soliton collisions” A. Oganesov, G. Vahala, L. Vahala J. Yepez and M. Soe, Computers and Mathematics with Applications, Vol. 17, issue 2 (2016).

[27] “Imaginary Time Integration Method Using a Quantum Lattice Gas Approach” A. Oganesov, C. Flint, G., L. Vahala, J. Yepez and M. Soe, Radiation Effects and Defects in Solids, Volume 171, Issue1-2 pp 96-102 (2016).

[26] “A 9-bit multiple relaxation Lattice Boltzmann magnetohydrodynamic algorithm for 2D turbulence”, C. Fling, G. Vahala, L. Vahala, M. Soe, Computers and Mathematics with Applications, Vol. 72, Issue 2, pp 394-403 (2016).

[25] “Unitary Quantum Lattice Gas Algorithm Generated from the Dirac Collision Operator for 1D soliton-soliton collisions”, A. Oganesov, G. L. Valahal, J. Yepez and M. Soe, Radiation Effects and Defects in Solids, Vol. 170, Issue 1, pp 55-64 (2015).

[24] “Magnetic field stabilization of a two-dimensional fluid jet: a multiple relaxation Lattice Boltzmann simulation”, C. Flint, G. Vahala, L. Vahala and M. Soe, Radiation Effects and Defects in Solids. Vol. 170, Issue 5, pp 429-438 (2015)

[23] “Lattice Boltzmann Algorithms for Plasma Physics”, G., L., Vahala, M. Soe, Radiation Effects & Defects in Solids, Vol. 168, Issue 10, pp735-758 (2013).

[22] “Unitary Qubit Lattice Simulations of Complex Vortex Structures”, G. Vahala, J. Yepez, L. Vahala and M. Soe, Computational Science and Discovery, Vol. 5, 014013 (2012).

[21] “Unitary Qubit Lattice Gas Representation of 2D and 3D Quantum Turbulence” G. Vahala, B. Zhan, J. Yepez, L. Vahala, M. Soe, Advanced Fluid Dynamics, ISBN 978-953-51-0270-0, pp 239- 272 (2012).

[20] “Poincare Recurrence and Spectral Cascades in 3D Quantum Turbulence” G. Vahala, J. Yepez, L. Vahala, M. Soe, B. Zhang and S. Ziegeler, Physical Review E 84, 046713 (2011).

[19] “Unitary Qubit Lattice Simulations of Multiscale Phenomena in Quantum Turbulence” G. Vahala, M. Soe, B. Zhang, J. Yepez, L. Vahala, J. Carter and S. Ziegeler, Proceedings of Supercomputing (SC 2011) ISBN: 978-1-4503-0771-0.

[18] “A Unitary Quantum Lattice Gas Algorithm for Two-Dimensional Quantum Turbulence” B. Zhang, G. Vahala, L. Vahala, M. Soe, Physical Review E 84 046701 (2011).

[17] “Quantum Lattice-Gas Model of Spinor Superfluids” J. Yepez, G. Vahala, L. Vahala, M. Soe, Proceedings of SPIE, Quantum Information and Computation VIII 7702, No.770209 (2010)

[16] “Poincare Recurrence and Intermittent Destruction of Quantum Kelvin Wave Cascade in Quantum Turbulence” G. Vahala, J. Yepez, L. Vahala, M. Soe, S. Ziegeler, Proceedings of SPIE, Quantuum Information and Computation VIII Vol. 7702 (2010).

[15] “Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolomogrov Cascades” J. Yepez, G. Vahala, L. Vahala, M. Soe. Physical Review Letter, Vol.103, 084501 (2009); 105, 129402 (2010)

[14] “Entropic, LES and Boundary Conditions in Lattice Boltzmann Simulations of Turbulence”, G. Vahala, B. Keating, M. Soe, J. Yepez, L. Vahala. S.Ziegler, European Physical Journal Special Topics Vol. 171, Issue 1, pp 167-171 (2009).

[13] “Quantum Lattice-Gas Algorithm for Quantum Turbulence – CAP Simulations on 12,288 Cores of Cray XT- 5 at NAVO” G. Vahala, J. Yepez, M. Soe, L. Vahala, and S. Ziegeler, IEEE Computer Society, ISBN: 978-0-7695-3946-1 pp106-113 (2009).

[12] “MHD Turbulence Studies Using Lattice Boltzmann Algorithms”, G. Vahala, B. Keating, M. Soe, J. Yepez, L. Vahala, J. Carter and S. Ziegler, Communications in Computational Physics Vol. 4, No. 3, pp 624-646 (2008).

[11] “Entropic Lattice Boltzmann Representations Required to Recover Navier-Stokes Flows”, B. Keating, G. Vahala, J. Yepez, M. Soe, and L.Vahala, Physical Review E75 036712 (2007).

[10] “Lattice Boltzmann Algorithms for Fluid Turbulence”, G. Vahala, M. Soe, S. Ziegeler, J.Yepez, L.Vahala, IEEE Computer Society 0-7695-3088-5 pp 52-56 (2007)

[9] “Nonlocal Closure and Parallel Performance of Lattice Boltzmann Models for Some Plasma Physics Problems” A. D. Macnab, G. Vahala, J. Carter, M. Soe and W. Dorland, Physica A 362, pp 48-56 (2006)

[8] “Magnetohydrydynamics Turbulence Simulations on Earth Simulator Using Lattice Boltzmann Method” J. Carter, M. Soe, L. Oliker, Y. Tsuda, G. Vahala, L. Vahala and A. Macnab, Proceedings of Supercomputing 2005 (Gordon Bell Finalist paper) ISBN 1-59593-0612.

[7] “Performance of Lattice Boltzmann Codes for Navier-Stokes and MHD Turbulence on High- End Computer Architectures” G. Vahala, J. Carer, M. Soe, J. Yepez, L. Vahala and A. Macnab, Parallel Computational Fluid Dynamics 2005 ISBN 0-44-522060-9.

[6] “Some Progress in the Development of Lattice Boltzmann Methods for Dissipative MHD”, A. Macnab, G. L, Vahala, P. Pavlo and M. Soe, Czech Journal of Physics, Vol. 52 (2002)

[5] “Variable Prandtl Number in Thermal Lattice Boltzmann Modeling of Turbulence” M. Soe, G. Vahala, P. Pavlo, L. Vahala and H. Chen, Physical Review E 57, 1-11 (1998)

[4] “Linear Stability Analysis of Thermal Lattice Boltzmann Models”, P. Pavlo, G. L, Vahala and M. Soe, Journal of Computational Physics, Vol.139, Issue 1, pp 79-91 (1998)

[3] “Extension of Lattice Boltzmann Techniques to Flows with Arbitrary Prandtl Numbers” M. Soe, G. Vahala, P. Pavlo, L. Vahala and H. Chen, (Editors: M. Schittenhelm, R. Bartiromo, F. WangerBrechtesgaden) EPS (24) 837- 840 (1997)

[2] “Determination of Eddy Transport Coefficients in Thermal Lattice Boltzmann Modeling of Two-dimensional Turbulence”, G. Vahala, P. Pavlo, L Vahala and M. Soe, Czech Journal of Physics, Vol. 46, Issue 11, pp 1063-1083 (1996)

[1] “Bifurcations in Two-Chamber Model for Edge Plasma in Singl-Null Divertor Tokamaks”, M. Soe (with A. Pujnabi), Journal of Plasma Physics, Vol. 52 Part3 457-463 (1994).