Degree Program Student Learning Report

Revised November 2019

Department of Mathematics \& Physical Sciences

AS in Physical Science

For 2020-2021 Academic Year

PART 1

Degree Program Mission and Student Learning Outcomes
A. State the school, department, and degree program missions.

University Mission	School Mission	Department Mission	Degree Program Mission
Our mission is to ensure students develop the skills and knowledge required to achieve professional and personal goals in dynamic local and global communities.	Central to the mission of the School is the preparation of students to achieve professional and personal goals in their respective disciplines and to enable their success in dynamic local and global communities. Our strategy is to foster an academic setting of diverse curricula that inherently incorporates an environment of service and collegiality.	The mission of the Department of Mathematics and Physical Sciences at Rogers State University is to support students in their pursuit of knowledge in mathematics and physical science.	The Associate of Science in Physical Science consists of general education curriculum and courses supporting other departmental programs. In support of the mission of the university, the school, and the department, the degree seeks to provide a solid general education component for all university students, provide curriculum in the physical sciences for students who are preparing for a baccalaureate- granting program, and provide
programs of study to students			
presently in the work force, allowing			
them the opportunity to continue			
their education.			

B. Align school purposes, department purposes, and program student learning outcomes with their appropriate University commitments.

University Commitments	School Purposes	Department Purposes	Student Learning Outcomes
To provide quality associate, baccalaureate, and graduate degree opportunities and educational experiences which foster student excellence in oral and written communications, scientific reasoning and critical and creative thinking.	The School offers innovative degrees, which focus upon developing skills in oral and written communication, critical thinking, creativity, empirical and evidencedbased inquiry, experimental investigation and theoretical explanation of natural phenomena, and innovative technology.	1. To increase the student's critical thinking and reasoning abilities. 2. To increase the student's understanding and appreciation of the physical world, and the ability to apply this understanding in his/her personal and professional life. 3. To increase the student's awareness of the benefits of incorporation of technology into Science and Math studies. 4. To increase the student's ability to interpret and understand his/her world mathematically.	1a. Demonstrate competency of basic physical science principles and their applications (outcome meets in two different department purposes 1 a and 5a). 1b. Apply problem solving skills through critical thinking and scientific methods (meets in 1b and 2b). 2a. Demonstrate an ability to design and conduct experiments, as well as to analyze and interpret data (meets in $2 a, 3 b$, and 4a). 2b. Apply problem solving skills through critical thinking and scientific methods (meets in 1b and 2b). 3a. Demonstrate an ability to design and conduct experiments, as well as to analyze and interpret data (meets in $2 \mathrm{a}, 3 \mathrm{a}$, and 4b). 4a. Explain and predict quantitative, analytical and graphical situations 4b. Demonstrate an ability to design and conduct experiments, as well as to analyze and interpret data (meets in 2a, 3a, and 4b).
To promote an atmosphere of academic and intellectual freedom and respect for diverse expression in	The School educates its majors to think independently and have the knowledge, skills and vision to work		

an environment of physical safety that is supportive of teaching and learning.	in all types of situations and careers and communicate with all types of people.		
To provide a general liberal arts education that supports specialized academic programs and prepares students for lifelong learning and service in a diverse society.	The School offers general education courses of high quality and purpose that provide a foundation for life- long learning.	5. To prepare a student to matriculate into a four-year degree program in math or science-related fields or graduate.	5a. Demonstrate competency of basic physical science principles and their applications (meets in 1a and 5a).
To provide students with a diverse, innovative faculty dedicated to excellence in teaching, scholarly pursuits and continuous improvement of programs.	The School fosters a community of scholars among the faculty and students of the institution.		
To provide university-wide student services, activities and resources that complement academic programs.			
To support and strengthen student, faculty and administrative structures that promote shared governance of the institution.			
To promote and encourage student, faculty, staff and community interaction in a positive academic climate that creates opportunities for cultural, intellectual and personal enrichment for the University and the communities it serves.	The School will offer and promote artistic, scientific, cultural, and public affairs events on the campus and in the region.	6. To serve as a resource for the community, utilizing the expertise of the faculty.	

PART 2

Revisit Proposed Changes Made in Previous Assessment Cycle

Revisit each instructional/assessment change proposed in Part 5 of the degree program SLR for the preceding year. Indicate whether the proposed change was implemented and comment accordingly. Any changes the department implemented for this academic year, but which were not specifically proposed in the preceding report, should also be reported and discussed here. Please note if no changes were either proposed or implemented for this academic year.

Proposed Change	Implemented? $(\mathrm{Y} / \mathrm{N})$	Comments
No new changes were planned, proposed, or implemented for this academic year.	N / A	N / A

PART 3

Response to University Assessment Committee Peer Review

The University Assessment Committee provides written feedback on departmental assessment plans through a regular peer review process. This faculty-led oversight is integral to RSU's commitment to the continuous improvement of student learning and institutional effectiveness. UAC recommendations are not compulsory and departments may implement them at their discretion. Nevertheless, respond below to each UAC recommendations from last year's peer review report. Indicate whether the recommendation was implemented and comment accordingly. Please indicate either if the UAC had no recommendations or if the program was not subject to review in the previous cycle.

Peer Review Feedback	Implemented $(\mathrm{Y} / \mathrm{N})$	Comment
No peer-review report was provided. At the peer-review session it was noted that there is an error in number of Trigonometry students and needed explanation and correction.	Y	It was due to not counting only the MPS majoring students in last year's Trig data and that's been addressed this year's report.

PART 4

Evidence of Student Learning

Evidence and analyze student progress for each of the student learning outcomes (same as listed in Part I B above) for the degree program. See the Appendix for a detailed description of each component. Note: The table below is for the first program learning outcome. Copy the table and insert it below for each additional outcome. SLO numbers should be updated accordingly.

Student Learning Outcome

SLO \#1: Demonstrate a thorough knowledge and understanding of basic physical science principles and their applications.

B. Assessment Measure	C. Performance Standard	D. Sampling Method	E. Sample Size (n)	F. Results	G. Standard Met (Y/N)
1A. Direct Measure: American Chemical Society (ACS) academic assessment exam.	1 A . At least 50% of majors who take the American Chemical Society (ACS) standardized exam will score in the $36^{\text {th }}$ percentile or higher.	1A. All Physical Science Major Students taking CHEM 1415, General Chemistry II.	1A. 0 (2020-21) 0 (2019-20) 3 (2018-19) 2 (2017-18) 3 (2016-17) 5 (2015-16) 2 (2014-15) 1 (2013-14) 3 (2012-13) 3 (2011-12) 5 (2010-11) 2 (2009-10) 29 Total	1A. No data. There were no declared majors enrolled in CHEM 1415 in 2020-21. No data. There were no declared majors enrolled in CHEM 1415 in 2019-20. $33 \%(1 / 3)$ of majors met the assessment performance standard in 2018-19; $50 \%(1 / 2)$ of majors met the assessment performance standard in 2017-18; 67\% (2/3) of majors met the assessment performance standard in 2016-17; 60\% $(3 / 5)$ of majors met the assessment performance standard in 2015-16; 50\% (1/2) of majors met the assessment performance standard in 2014-15; 100\% (1/1) of majors met the assessment performance standard in 2013-14; 0\% ($0 / 3$) of majors met the assessment performance standard in 2012-13; 66.7\% ($2 / 3$) of majors met the assessment performance standard in 2011-12; 60\% $(3 / 5)$ of majors met the assessment performance standard in 2010-11; 100\% (2/2) of majors met the assessment performance standard in 2009-10. A 10year "average" showed that 16/29 (55\%, N = 29) majors met the assessment performance standard.	1A. N/A (2020-21) N/A (2019-20) N (2018-19) Y (2017-18) Y (2016-17) Y (2015-16) $Y(2014-15)$ Y (2013-14) N (2012-13) Y (2011-12) $Y(2010-11)$ Y (2009-10) Y: Ten-year average
1B. Direct Measure: Four hourly exams in MATH 1613, Trigonometry.	1B. At least 70% of majors will earn a grade of 70% or better on the four	1B. All available Physical Science Major Students taking Math 1613.	1B. 5 (2020-21) On-ground (OG)-5 Blended (B)-N/A Online (O)-N/A	1B. 2 of 5 (40%) [OG-2/5, B-N/A, and ON/A] scored 70% or better on the hourly exams in 2020-21.	$\begin{aligned} & \text { 1B. N (2020- } \\ & \text { 21) } \end{aligned}$

	hourly exams in Math 1613, Trigonometry.		22 (2019-20) On-ground (OG)-4 Blended (B)-N/A Online (O)-18 6 (2018-19) On-ground (OG)-6 Blended (B)-N/A 7 (2017-18) On-ground (OG)-7 Blended (B)-N/A 6 (2016-17) On-ground (OG)-2 Blended (B)-4 - (2015-16) 6 (2014-15) 3 (2013-14) 6 (2012-13) 12(2011-12) 73 Total	15 of 22 (68\%) [OG-3/4, B-N/A, and O$12 / 18$] scored 70% or better on the hourly exams in 2019-20. 5 of 6 (83%) [OG-5/6 and B-N/A] scored 70% or better on the hourly exams in 2018-19; 1 of 7 (14\%) [OG-1/7 and B-N/A] scored 70% or better on the hourly exams in 2017-18; 5 of 6 (83%) [OG-2/2 and B$3 / 4]$ scored 70% or better on the hourly exams in 2016-17; No data were available during 2015-16; 4 of 6 (67\%) scored 70% or better on the hourly exams in 2014-15; 3 of $3(100 \%)$ in 2013-14; 6 of $6(100 \%)$ in 2012-13; 10 of 12 (83%) in 2011-12.	N (2019-20) Y (2018-19) N (2017-18) Y (2016-17) - (2015-16) N (2014-15) Y (2013-14) Y (2012-13) Y (2011-12)
1C. Direct Measure: Four lecture exams in PHYS 2015, Engineering Physics I (if offered) and PHYS 1114, General Physics I. Note: Both are first semester introductory level physics courses with the same focus. PHYS 2015 is calculus based, intended for students majoring in physics, mathematics or engineering.	1C. At least 50% of the Majors will score 70% or greater on four lecture exams in PHYS 2015 and/or PHYS 1114.	1C. All Physical Science Major Students taking PHYS 2015 and/or PHYS 1114.	1C. 1 (2020-21) 3 (2019-20) 5 (2018-19) 5 (2017-18) 3 (2016-17) 2 (2015-16) 2 (2014-15) 9 (2013-14) 15(2012-13) 4(2011-12) 49 Total	1C. 100\% (1/1) - The MPS major met the expected performance standard in 202021. $0 \%(0 / 3)$ of MPS majors met the expected performance standard in 2019-20. $0 \%(0 / 5)$ of MPS majors met the expected performance standard in 2018-19. $60 \%(3 / 5)$ of MPS majors met the expected performance standard in 2017-18. $67 \%(2 / 3)$ of MPS majors met the expected performance standard in 2016-17. 50\% (1/2) of MPS majors met the expected performance standard in 2015-16. 100% (2/2) MPS majors met the expected performance standard in 2014-15. $22 \%(2 / 9)$ of MPS majors met the expected performance standard in 2013-14. $47 \%(7 / 15)$ of MPS majors met the expected standard in 2012-13. 75% (3/4) of MPS majors met the expected performance standard in 2011-12.	1C. Y(2020- 21) N (2019-20) N (2018-19) Y (2017-18) $Y(2016-17)$ Y (2015-16) Y (2014-15) N (2013-14) N (2012-13) Y (2011-12)

H.

Conclusions

1A. No data were available this year because there were no declared majors enrolled in CHEM 1415 in AY2020-21. However, this measure was met in eight out of ten years when data were available; a majority of majors (more than 50%) in CHEM 1415 were able to possess basic knowledge of chemistry, and have an understanding of its principles and their applications and thus met the standards. With small N (number of majoring students in CHEM 1415), annual fluctuations are to be expected. Keeping an average of the data reveals any on-going trends.

1B. The results were above or very close to the performance target in six of the last nine years where data were available, suggesting students (majors) understand the basic trigonometric concepts to the standards expected by the department.

1C. Yearly outcomes fluctuate as expected (Met 70% threshold standard 6 times in past 10 years). There is no indication of ongoing trends.

A. Student Learning Outcome					
SLO \#2: Apply problem solving skills through critical thinking and the scientific methods.					
B. Assessment Measure	C. Performance Standard	D. Sampling Method	E. Sample Size (n)	F. Results	G. Standard Met (Y/N)
2A. Direct Measure: Titration lab reports and Beers Law lab reports in CHEM 1415, General Chemistry II.	2A. At least 50% of majors will earn a grade of 70% or higher for lab reports.	2A. All Physical Science Major Students taking CHEM 1415, General Chemistry II.	2A. 0 (2020-21) $\begin{array}{\|l} \hline 0 \text { (2019-20) } \\ 5 \text { (2018-19) } \\ 2 \text { (2017-18) } \\ 3 \text { (2016-17) } \\ 5 \text { (2015-16) } \\ 2(2014-15) \\ 1 \text { (2013-14) } \\ 3 \text { (2012-13) } \\ 3 \text { (2011-12) } \\ 5(2010-11) \\ \frac{2}{31} \text { (2009-10) } \\ \hline 31 \end{array}$	2A. No data. There were no declared majors enrolled in CHEM 1415 in 2020-21. No data. There were no declared majors enrolled in CHEM 1415 in 2019-20. $60 \%(3 / 5)$ of majors met the assessment performance standard in 2018-19; 100\% (2/2) of majors met the assessment performance standard in 2017-18; 100\% (3/3) of majors met the assessment performance standard in 2016-17; 80\% (4/5) of majors met the assessment performance standard in 2015-16; 100\% (2/2) of majors met the assessment performance standard in 2014-15; 0\% (0/1) of majors met the assessment performance standard in 2013-14; 100\% (3/3) of majors met the assessment performance standard in 2012-13; 100\%	2A. N/A (2019-20) N/A (2019-20) Y (2018-19) Y (2017-18) Y (2016-17) Y (2015-16) Y (2014-15) N (2013-14) Y (2012-13) Y (2011-12) N (2010-11) Y (2010-09) Y: Ten-year average

$\left.\begin{array}{|l|l|l|l|l|l|}\hline & & & & \begin{array}{l}\text { (3/3) of majors met the assessment } \\ \text { performance standard in 2011-12; 40\% } \\ \text { (2/5) of majors met the assessment } \\ \text { performance standard in 2010-11; 100\% } \\ \text { (2/2) of majors met the assessment } \\ \text { performance standard in 2009-10. A 10- } \\ \text { year "average" showed that 24/31 (77\%, N } \\ \text { =31) majors met the assessment }\end{array} \\ \text { performance standard. }\end{array}\right]$

A.

Student Learning Outcome

SLO \#3: Explain and predict quantitative, analytical and graphical situations.

B. Assessment Measure	C. Performance Standard	D. Sampling Method	E. Sample Size (n)	F. Results	G. Standard Met (Y / N)

3A. Direct measure: Ten unit-laboratory reports in PHYS 1114, General Physics and PHYS 2015, Engineering Physics I (if offered). Note: Both are first semester introductory level physics courses with the same focus. PHYS 2015 is calculus based, intended for students majoring in physics, mathematics or engineering.	3A. At least 70% of majors will average 70% or better on ten unit-laboratory reports in PHYS 1114 and PHYS 2015.	3A. All Physical Science Major Students taking PHYS 1114, General Physics and PHYS 2015, Engineering Physics I.	3A. 1 (2020-21) $\begin{aligned} & 3 \text { (2019-20) } \\ & 5 \text { (2018-19) } \\ & 5(2017-18) \\ & 3(2016-17) \\ & 2(2015-16) \\ & 2(2014-15) \\ & 9(2013-14) \\ & 15(2012-13) \\ & 4(2011-12) \\ & \hline 49 \text { Total } \end{aligned}$	3A. 100\% (1/1) - The MPS major met assessment performance standard in 2020-21. 100% (3/3) of MPS majors met assessment performance standard in 2019-20. 80\% (4/5) of MPS majors met assessment performance standard in 2018-19. 80\% (4/5) of MPS majors met assessment performance standard in 2017-18. $100 \%(3 / 3)$ of MPS majors met assessment performance standard in 2016-17. 100% (2/2) of MPS majors met assessment performance standard in 2015-16. 100% (2/2) of MPS majors met assessment performance standard in 2014-15. 100% (9/9) of MPS majors met assessment performance standard in 2013-14. $87 \%(13 / 15)$ of MPS majors met expected performance standard in 2012-13. 100% (4/4) of MPS majors met assessment performance standard in 2011-12.	3A. Y (2020- 21) Y (2019-20) Y (2018-19) Y (2017-18) Y (2016-17) Y (2015-16) Y (2014-15) $Y(2013-14)$ Y (2012-13) Y (2011-12)

H.

Conclusions

3A. MPS majors in PHYS 1114 \& PHYS 2015 were able to conduct experiments and apply mathematical/graphical methods to analyze and interpret the data. Standards were met continuously in past 10 years.
A.

Student Learning Outcome

SLO \#4: Demonstrate an ability to design and conduct experiments, as well as to analyze and interpret data.

B. Assessment Measure	C. Performance Standard	D. Sampling Method	E. Sample Size (n)	F. Results	G. Standard Met (Y/N)
4A. Direct Measures Composite lab grade in CHEM 1415, General Chemistry II.	4A. At least 50% of majors will earn a lab grade of 70% or higher on laboratory reports in CHEM 1415, General Chemistry II.	4A. All Physical Science Major Students taking CHEM 1415, General Chemistry II.	4A. 0 (2020-21) $\begin{aligned} & 0 \text { (2019-20) } \\ & 5 \text { (2018-19) } \\ & 2(2017-18) \\ & 3(2016-17) \\ & 5(2015-16) \\ & 2(2014-15) \\ & 1 \text { (2013-14) } \\ & 3(2012-13) \\ & 3(2011-12) \\ & 5(2010-11) \\ & \frac{2(2009-10)}{31 \text { Total }} \end{aligned}$	4A. No data. There were no declared majors enrolled in CHEM 1415 in 202021. No data. There were no declared majors enrolled in CHEM 1415 in 2019-20. $100 \%(5 / 5)$ of majors met the assessment performance standard in 2018-19; 100\% (2/2) of majors met the assessment performance standard in 2017-18; 100\% (3/3) of majors met the assessment performance standard in 2016-17; 80\% (4/5) of majors met the assessment performance standard in 2015-16; 100\% (2/2) of majors met the assessment performance standard in 2014-15; 100\% (1/1) of majors met the assessment performance standard in 2013-14; 100\% (3/3) of majors met the assessment performance standard in 2012-13; 100\% (3/3) of majors met the assessment performance standard in 2011-12; 60\% (3/5) of majors met the assessment performance standard in 2010-11; 100\% (2/2) of majors met the assessment performance standard in 2009-10. A 10-year "average" showed that 28/31 $(90 \%, N=31)$ majors met the assessment performance standard.	4A. N/A (202021) N/A (2019-20) Y (2018-19) Y (2017-18) Y (2016-17) Y (2015-16) Y (2014-15) Y (2013-14) Y (2012-13) $Y(2011-12)$ Y (2010-11) Y (2009-10) Y: Ten-year average
4B. Direct measure: Ten unit-laboratory reports in PHYS	4B. At least 70\% of majors will average 70% or better on ten	4B. All Physical Science Major Students taking PHYS 1114, General	4B. 1 (2020-21)	4B. 100\% (1/1) - The MPS major met the assessment performance standard in 2020-21.	$\begin{aligned} & \text { 4B. Y (2020- } \\ & 21) \end{aligned}$

1114, General Physics and PHYS 2015, Engineering Physics I (if offered). Note: Both are first semester introductory level physics courses with the same focus. PHYS 2015 is calculus based, intended for students majoring in physics, mathematics or engineering.	unit-laboratory reports in PHYS 1114 and PHYS 2015.	Physics and PHYS 2015, Engineering Physics I.	3 (2019-20) $5(2018-19)$ $5(2017-18)$ $3(2016-17)$ $2(2015-16)$ $2(2014-15)$ $9(2013-14)$ $15(2012-13)$ $4(2011-12)$ 49 Total	$100 \%(3 / 3)$ of MPS majors met the assessment performance standard in 2019-20. 80\% (4/5) of MPS majors met assessment performance standard in 2018-19. 80% (4/5) of MPS majors met assessment performance standard in 2017-18. 100% (3/3) MPS majors met assessment performance standard in 2016-17. 100% (2/2) MPS majors met assessment performance standard in 2015-16. 100\% (2/2) MPS majors met assessment performance standard in 2014-15. 100% (9/9) MPS majors met assessment performance standard in 2013-14. 87% (13/15) MPS majors met expected performance standard in 2012-13. 100% (4/4) MPS majors met assessment performance standard in 2011-12.	$\begin{aligned} & Y(2019-20) \\ & Y(2018-19) \\ & Y ~(2017-18) \\ & Y(2016-17) \\ & Y ~(2015-16) \\ & Y(2014-15) \\ & Y ~(2013-14) \\ & Y(2012-13) \\ & Y ~(2011-12) \end{aligned}$
H. Conclusions					

4A. No data were available this year because there were no declared majors enrolled in CHEM 1415 in AY2020-21. Standards were met for the last ten academic years continuously where data were available. A majority of majors in CHEM 1415 were able to design and conduct experiments, and successfully analyze and interpret the data gathered from those. With small N (number of MPS majoring students in CHEM 1415), annual fluctuations are to be expected. Keeping a moving average of the data reveals any on-going trends.

4B. MPS majors in PHYS 1114 \& PHYS 2015 were able to conduct experiments and apply mathematical / graphical methods to analyze and interpret the data. Standards were met continuously in past 10 years.

PART 5

Proposed Instructional or Assessment Changes

Learning outcomes assessment can generate actionable evidence of student performance that can be used to improve student success and institutional effectiveness. Knowledge of student strengths and weakness gained through assessment can inform faculty efforts to improve course instruction and program curriculum. Below discuss potential changes the department is considering which are aimed at improving student learning or the assessment process. Indicate which student learning outcome(s) will be affected and provide a rationale for each proposed change. These proposals will be revisited in next assessment cycle.

Proposed Change	Applicable Learning Outcomes	Rationale and Impact
No new changes are planned to implement for the next academic year.		

PART 6

Summary of Assessment Measures

A. How many different assessment measures were used?

Nine different assessment measures were used.
B. List the direct measures (see appendix):

Nine direct measures:
[1] Gen. Chemistry II: The American Chemical Society (ACS) Academic Assessment Exam (1A); [2] Trigonometry: Exams (1B); [3] Physics: Exams (1C, 2C); [4] Gen. Chemistry II: Lab Reports (2A); [5] Trigonometry: Class Assignments (2B); [6] Physics: Laboratory Reports (3A, 4B); [7] Gen. Chemistry II: Laboratory Reports-Grades (4A)
C. List the indirect measures (see appendix):

No indirect measures were used.

PART 7

Faculty Participation and Signatures

A. Provide the names and signatures of all full time and adjunct faculty who contributed to this report.

Faculty Name	Assessment Role	
Dr. Jamie Graham	Reviewed and approved final draft.	
Collected and analyzed Trigonometry data;		
Reviewed and approved final draft.		
Collected and analyzed Physics and Trigonometry		
data; Reviewed and approved final draft.	Collected and analyzed Chemistry data; Reviewed and approved final draft.	
Dr. Kirk Voska	Collected and analyzed Chemistry data; Reviewed and approved final draft.	
Dr. Kasia Roberts	Reviewed and approved final draft.	Prepared the report, reviewed, and approved final draft.
Dr. Ram Adhikari		

B. Reviewed by:

Titles	Name	Signature	Date
Department Head	Dr. Jamie Graham	Lamui N. Snahem	06/07/2
Dean	Dr. Keith Martin	- Matt N.M Maet	$6 / 8 / 21$

Appendix

