Degree Program Student Learning Report
Revised August 2017

Department of Technology and Justice Studies
AS in Computer Science
For 2018-2019 Academic Year

PART 1
Degree Program Mission and Student Learning Outcomes

A. State the school, department, and degree program missions.

<table>
<thead>
<tr>
<th>University Mission</th>
<th>School Mission</th>
<th>Department Mission</th>
<th>Degree Program Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our mission is to ensure students develop the skills and knowledge required to achieve professional and personal goals in dynamic local and global communities.</td>
<td>The mission of the School of Professional Studies (SPS) to develop students’ skills and knowledge so they can successfully perform in their professional career of choice, and to prepare them to be lifelong learners in a diverse society. This is accomplished in a positive academic climate which is supported by academic and intellectual freedom, and faculty who are dedicated to a quality educational experience. Curricula for the associate, bachelors and graduate degrees are developed by expert faculty who are dedicated to an excellence in teaching, research and university service. The programs in the SPS are dynamic,</td>
<td>The mission of the Department of Technology and Justice Studies is to support the SPS and RSU in their mission to prepare students to achieve professional and personal goals in dynamic local and global communities.</td>
<td>To provide students with the necessary skills required to become competent in computer programming at the entry level, as well as to understand the significant issues of how technology is changing the workplace; and to provide students with the academic background to seek a baccalaureate degree in Computer Science, Computer Information Systems, or Information Technology.</td>
</tr>
</tbody>
</table>
University Mission

and foster student achievement of their personal and professional goals reflective of their field of study. Innovative teaching strategies are used across diverse educational platforms to facilitate student learning outcomes.

School Mission

Department Mission

Degree Program Mission

B. Align school purposes, department purposes, and program student learning outcomes with their appropriate University commitments.

<table>
<thead>
<tr>
<th>University Commitments</th>
<th>School Purposes</th>
<th>Department Purposes</th>
<th>Student Learning Outcomes</th>
</tr>
</thead>
</table>
| To provide quality associate, baccalaureate, and graduate degree opportunities and educational experiences which foster student excellence in oral and written communications, scientific reasoning and critical and creative thinking. | The SPS provides this support by providing two-year and four-year educational opportunities in business, sport management, technology, justice studies, nursing, and emergency medical services. The SPS accomplishes its mission through traditional and innovative learning opportunities including one graduate program, nine bachelor’s programs and seven associate degrees. The baccalaureate degrees are taught using a large array of innovative methods. | The Department of Technology and Justice Studies provides the technology course support for the Associate in Science and Associate in Applied Science degrees, as well as the Bachelor of Science in Business Information Technology, the Bachelor of Science in Game Development, and the Bachelor of Technology in Applied Technology. The department also offers a Bachelor of Science in Justice Administration and an Associate in Arts degree in Criminal Justice with options in Law/Justice and the Collegiate Officer Program (COP). As indicated, many of the programs offered by the Department of Technology and Justice Studies are available online. | 1. Students will demonstrate competence in analyzing problems, designing, and implementing programs to solve the problems using computer programming languages.
2. Students will integrate the design, implementation and administration of computer networks.
3. Students will demonstrate proficiency in the use of currently standard computing tools such as internet browsers, email, word processors, spreadsheet, and presentation software. |

To promote an atmosphere of academic and intellectual freedom
<table>
<thead>
<tr>
<th>University Commitments</th>
<th>School Purposes</th>
<th>Department Purposes</th>
<th>Student Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>and respect for diverse expression in an environment of physical safety that is supportive of teaching and learning.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To provide a general liberal arts education that supports specialized academic programs and prepares students for lifelong learning and service in a diverse society.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To provide students with a diverse, innovative faculty dedicated to excellence in teaching, scholarly pursuits and continuous improvement of programs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To provide university-wide student services, activities and resources that complement academic programs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To support and strengthen student, faculty and administrative structures that promote shared governance of the institution.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To promote and encourage student, faculty, staff and community interaction in a positive academic climate that creates opportunities for cultural, intellectual and personal enrichment for the University and the communities it serves.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART 2
Revisit Proposed Changes Made in Previous Assessment Cycle

Revisit each instructional/assessment change proposed in Part 5 of the degree program SLR for the preceding year. Indicate whether the proposed change was implemented and comment accordingly. Any changes the department implemented for this academic year, but which were not specifically proposed in the preceding report, should also be reported and discussed here. Please note if no changes were either proposed or implemented or this academic year.

<table>
<thead>
<tr>
<th>Proposed Change</th>
<th>Implemented? (Y/N)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLO #3: We changed the performance measure to 70% of students exceeding 86% from 70% of students exceeding 78% to be consistent with the AASAT program SLO and the benchmark we use for the computer proficiency exam.</td>
<td>Y</td>
<td>Changing the performance standard did not affect the percentage of students meeting the standard.</td>
</tr>
</tbody>
</table>

PART 3
Response to University Assessment Committee Peer Review

The University Assessment Committee provides written feedback on departmental assessment plans through a regular peer review process. This faculty-led oversight is integral to RSU’s commitment to the continuous improvement of student learning and institutional effectiveness. UAC recommendations are not compulsory and departments may implement them at their discretion. Nevertheless, respond below to each UAC recommendations from last year’s peer review report. Indicate whether the recommendation was implemented and comment accordingly. Please indicate either if the UAC had no recommendations or if the program was not subject to review in the previous cycle.

<table>
<thead>
<tr>
<th>Peer Review Feedback</th>
<th>Implemented (Y/N)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Not subject to review last year.</td>
</tr>
</tbody>
</table>
PART 4
Evidence of Student Learning

Evidence and analyze student progress for each of the student learning outcomes (same as listed in Part I B above) for the degree program. See the Appendix for a detailed description of each component. Note: The table below is for the first program learning outcome. Copy the table and insert it below for each additional outcome. SLO numbers should be updated accordingly.

<table>
<thead>
<tr>
<th>A. Student Learning Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLO #1: Students will demonstrate competence in analyzing problems, designing, and implementing programs to solve the problems using computer programming languages.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Assessment Measure</th>
<th>C. Performance Standard</th>
<th>D. Sampling Method</th>
<th>E. Sample Size (n)</th>
<th>F. Results</th>
<th>G. Standard Met (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Assessment Test (PAT) will be administered to all CS 2323 students.</td>
<td>50% of the students who took the exam score higher than 60%. The PAT tests students’ cumulative knowledge of programming. The benchmark was set lower than the typical 70 to 75% level to compensate difficulty of the exam for those who have not taken the sequenced programming courses</td>
<td>All students completing CS 2323 Programming II: Fall and Spring classes, both online.</td>
<td>18 Online</td>
<td>2019 online 2018 online 2017-8 online 2018 in class</td>
<td>Range 9-10 1 0 0 0 8.0-8.9 0 0 1 1 7.0-7.9 1 1 15 1 6.0-6.9 3 4 11 2 5.0-5.9 3 1 14 2 0-5.0 1 3 0 0</td>
</tr>
</tbody>
</table>
A. Student Learning Outcome

SLO #1: Students will demonstrate competence in analyzing problems, designing, and implementing programs to solve the problems using computer programming languages.

<table>
<thead>
<tr>
<th>B. Assessment Measure</th>
<th>C. Performance Standard</th>
<th>D. Sampling Method</th>
<th>E. Sample Size (n)</th>
<th>F. Results</th>
<th>G. Standard Met (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in consecutive semesters.</td>
<td></td>
<td></td>
<td>Median 6.00</td>
<td>6.00 6.5 6.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STDEV 1.74</td>
<td>2.01 1.25 1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overall 55.6% (10/18) of students exceeded 60%.</td>
<td></td>
</tr>
</tbody>
</table>

H. Conclusions

Comparative Data:
- **Fall 2015:** Mean 53.9%, Median 57.1%, STD 22.4%
- **Spring 2016:** Mean 49.6%, Median 71.0, STD 37.2%
- **Fall 2016:** Mean 50.7%, Median 62.5%, STD 27.1%
- **Spring 2017:** Mean 63.25%, Median 65%, STD 12.6%
- **Fall 2017 and Spring 2018 Online:** Mean 61.5%; Median 65%, STD 12.5%, 65.9% of students exceeded 60%
- **Spring 2018 Traditional:** Mean 59.2%, Median 62.5%, STD, 12.5%, 66.7% of students exceeded 60%
- **2018-2019 online:** Mean 55.3%; Median 60%, STD 19.3%, 55.6% of students exceeded 60%
A. Student Learning Outcome

SLO #2: Students will integrate the design, implementation and administration of computer networks.

<table>
<thead>
<tr>
<th>B. Assessment Measure</th>
<th>C. Performance Standard</th>
<th>D. Sampling Method</th>
<th>E. Sample Size (n)</th>
<th>F. Results</th>
<th>G. Standard Met (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>An IT 2153 hands-on project will be assigned that examines the students’ knowledge and ability to set up a minimal Local Area Network (LAN) involving a server and two or more clients.</td>
<td>70% of the students will be able to design a Local Area Network (LAN) upon completing the IT2153 Network Operating Systems I course with an accuracy of 70%.</td>
<td>All ASCS students taking IT 2153 in Fall 2018. Class is online.</td>
<td>14</td>
<td>Course Grades: 90-100 4 80-89 5 70-79 1 60-69 0 0-59 4</td>
<td>Y</td>
</tr>
</tbody>
</table>

H. Conclusions

The percentage of meeting the performance was lower this year due to the fact that 4 students received an F. They should have withdrawn from the class to avoid the failing grade.

Comparative Data:

- **2014-2015:**
 - 8 out of 8 (100%) met the performance measure.
- **2015-2016**
 - 11 out of 12 (91.7%) met the performance measure.
- **2016-2017**
 - 19 out of 21 (90.5%) met the performance measure.
- **2017-2018**
 - 11 out of 12 (91.7%) met the performance measure.
- **2018-2019**
 - 10 out of 14 (71.4%) met the performance measure.
A. Student Learning Outcome

SLO #3: Students will demonstrate proficiency in the use of currently standard computing tools such as internet browsers, email, word processors, spreadsheet, and presentation software.

<table>
<thead>
<tr>
<th>B. Assessment Measure</th>
<th>C. Performance Standard</th>
<th>D. Sampling Method</th>
<th>E. Sample Size (n)</th>
<th>F. Results</th>
<th>G. Standard Met (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A standardized final exam developed by the MASH (Microcomputer Applications Stakeholders) to assess the skill level of Microsoft Office 2016.</td>
<td>At least seventy percent of the ASCS majors enrolled in CS 1113 Microcomputer Applications will successfully complete CS 1113 Microcomputer Applications with a score of 86% or better on the standardized final exam</td>
<td>All ASCS majors who took the Microcomputer Applications course in the fall 2018 and the spring 2019 semesters</td>
<td>5</td>
<td>Final test scores: 4 A’s (90-100%) 1 B’s (80-89%): 0 C (70-79%) 0 D (60-69%) 0 F’s (Below 60%). Mean: 93.6 Median: 95 5 out of 5 (100%) scored 86% or higher</td>
<td>Y</td>
</tr>
</tbody>
</table>
A. Student Learning Outcome

SLO #3: Students will demonstrate proficiency in the use of currently standard computing tools such as internet browsers, email, word processors, spreadsheet, and presentation software.

<table>
<thead>
<tr>
<th>B. Assessment Measure</th>
<th>C. Performance Standard</th>
<th>D. Sampling Method</th>
<th>E. Sample Size (n)</th>
<th>F. Results</th>
<th>G. Standard Met (Y/N)</th>
</tr>
</thead>
</table>

ASCS students demonstrated the proficiency in the use of MS Office, thus meeting the RSU computer proficiency requirement.

Comparative Data:
2014-2015:
 14 out of 17 students (82.33%) earned a grade of C or better,
2015-2016
 16 out of 16 (100%) scored 78% or higher
2016-2017
 7 out of 7 (100%) scored 78% or higher
2017-2018
 10 out of 10 (100%) scored 78% or higher
2018-2019
 5 out of 5 (100%) scored 86% or higher

H. Conclusions

PART 5
Proposed Instructional or Assessment Changes

Learning outcomes assessment can generate actionable evidence of student performance that can be used to improve student success and institutional effectiveness. Knowledge of student strengths and weakness gained through assessment can inform faculty efforts to improve course instruction and program curriculum. Below discuss potential changes the department is considering which are aimed at improving student learning or the assessment process. Indicate which student learning outcome(s) will be affected and provide a rationale for each proposed change. These proposals will be revisited in next assessment cycle.
We are upgrading MS Office to 2020 next year. We will be using Simnet and textbook which cover MS Office 2019.

<table>
<thead>
<tr>
<th>Proposed Change</th>
<th>Applicable Learning Outcomes</th>
<th>Rationale and Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>We are upgrading MS Office to 2020 next year. We will be using Simnet and textbook which cover MS Office 2019.</td>
<td>SLO #3</td>
<td>Office 2019 is similar to Office 365. Textbook and Simnet software are available in the fall. We may need to adjust the benchmark of the performance measure after the fall semester depending on the fall final exam results.</td>
</tr>
</tbody>
</table>

PART 6

Summary of Assessment Measures

A. How many different assessment measures were used? 3

B. List the direct measures (see appendix): Programming Assessment Test (PAT), final exam

C. List the indirect measures (see appendix): course grades

PART 7

Faculty Participation and Signatures

A. Provide the names and signatures of all full time and adjunct faculty who contributed to this report.

<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Assessment Role</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roy Gardner</td>
<td>Prepare report, collect, analyze data for IT 2153</td>
<td>On separate sheet</td>
</tr>
<tr>
<td>Chris Ruhl</td>
<td>Collect, analyze data for CS 1113</td>
<td>On separate sheet</td>
</tr>
<tr>
<td>Peter Macpherson</td>
<td>Administer PAT, collect, analyze PAT results.</td>
<td>On separate sheet</td>
</tr>
<tr>
<td>Curtis Sparling</td>
<td>Collect, analyze data for CS 1113</td>
<td>On separate sheet</td>
</tr>
</tbody>
</table>
B. Reviewed by:

<table>
<thead>
<tr>
<th>Titles</th>
<th>Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department Head</td>
<td>Roy Gardner</td>
<td>On separate sheet</td>
<td></td>
</tr>
<tr>
<td>Dean</td>
<td>Susan Willis</td>
<td>On separate sheet</td>
<td></td>
</tr>
</tbody>
</table>
Appendix

Student Learning Outcome
Student learning outcomes are the observable or measurable results that are expected of a student following a learning experience. Learning outcomes may address knowledge, skills, attitudes, or values that provide evidence that learning has occurred. They can apply to a specific course, a program of study, or an institution. Outcomes should be worded in language that clearly implies a measurable behavior or quality of student work. Outcomes should also include Bloom’s action verbs appropriate to the skill level of learning expected of students.

Examples:
Students will be able to apply principles of evidence-based medicine to determine clinical diagnoses and implement acceptable treatment modalities.
Students will be able to articulate cultural and socioeconomic differences and the significance of these differences for instructional planning.

Assessment Measure
An assessment measure is a tool or instrument used to gather evidence of student progress toward an established learning outcome. Every program learning outcome should have at least one appropriate assessment measure. Learning outcomes are frequently complex, however, and may require multiple measures to accurately assess student performance. Assessment plans should try to incorporate a combination of direct and indirect assessment measures. Direct provide concrete evidence of whether a student has command of a specific subject or content area, can perform a certain task, exhibits a particular skill, demonstrates a certain quality in their work, or holds a particular value. Because direct measures tap into actual student learning, it is often viewed as the preferred measure type. Indirect measures assess opinions or thoughts about the extent of a student’s knowledge, skills, or attitudes. They reveal characteristics associated with learning, but they only imply that learning has occurred. Both types of measures can provide useful insight into student learning and experiences in a program. Each also has unique advantages and disadvantages in terms of the type of data and information it can provide. Examples of common direct and indirect measures are listed below.

<table>
<thead>
<tr>
<th>Direct Measures</th>
<th>Indirect Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive exams</td>
<td>Graduate exit interviews</td>
</tr>
<tr>
<td>Class assignments</td>
<td>Focus group responses</td>
</tr>
<tr>
<td>Juried review of performances and exhibitions</td>
<td>Job placement statistics</td>
</tr>
<tr>
<td>Internship or clinical evaluations</td>
<td>Graduate school placement statistics</td>
</tr>
<tr>
<td>Portfolio evaluation</td>
<td>Graduation and retention rates</td>
</tr>
<tr>
<td>Pre/post exams</td>
<td>Student and alumni surveys that assess perceptions of the program</td>
</tr>
<tr>
<td>Third-party exams such as field tests, certification exams, or licensure exams</td>
<td>Employer surveys that assess perceptions of graduates</td>
</tr>
<tr>
<td>Senior thesis or capstone projects</td>
<td>Honors and awards earned by students and alumni.</td>
</tr>
</tbody>
</table>
Performance Standard
A performance standard is a clearly-defined benchmark that establishes the minimally-acceptable level of performance expected of students for a particular measure.

Examples:
At least 70% of students will score 70% or higher on a comprehensive final exam.
At least 75% of students will earn score a “Proficient” or higher rating on the Communicate Effectively rubric.

Sampling Method
Sampling method describes the methodology used for selecting the students that were assessed for a given measure. In some cases, such as most course-embedded measures, it is possible to assess all active enrolled students. In other cases, however, it is not feasible to measure the population of all potential students. In these cases, it is important that a well-designed sampling scheme be used to ensure the sample of students measured is an unbiased representation of the overall population. Where multiple instructors teach a particular course, care should be taken to assess students across all instructors, including adjuncts.

Examples:
All students enrolled in BIOL 4801 Biology Research Methods II
All majors graduating in the 2016-17 academic year.

Sample Size
Sample size is the number of students from which evidence of student learning was obtained for a given assessment measure.

Results
Results are an analytical summary of the findings arising from the assessment of student performance for a particular assessment measure. Typical presentation includes descriptive statistics (mean, median, range) and score frequency distributions.

Standard Met?
This is a simple yes/no response that indicates whether the observed level of student performance for a particular measure meets or exceeds the established standard. An N/A may be used where circumstances prevented the department from accurately assessing a measure.

Conclusion
The conclusion is a reflective summary and determination of the assessment results obtained for a specific learning outcome. Questions to consider in this section include the following:

- Does the assessment evidence indicate the learning outcome is being satisfactorily met?
- Where multiple measures are used for a single outcome, do the results present a consistent or contradictory pattern?
- What are the most valuable insights gained from the assessment results?
- What strengths and weaknesses in student learning do the results indicate?
- What implications are there for enhancing teaching and learning?
- How can the assessment process be improved?